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Solving the Kohn-Sham eigenvalue problem constitutes the most computationally expensive part in self-
consistent density functional theory �DFT� calculations. In a previous paper, we have proposed a nonlinear
Chebyshev-filtered subspace iteration method, which avoids computing explicit eigenvectors except at the first
self-consistent-field �SCF� iteration. The method may be viewed as an approach to solve the original nonlinear
Kohn-Sham equation by a nonlinear subspace iteration technique, without emphasizing the intermediate lin-
earized Kohn-Sham eigenvalue problems. It reaches self-consistency within a similar number of SCF iterations
as eigensolver-based approaches. However, replacing the standard diagonalization at each SCF iteration by a
Chebyshev subspace filtering step results in a significant speedup over methods based on standard diagonal-
ization. Here, we discuss an approach for implementing this method in multi-processor, parallel environment.
Numerical results are presented to show that the method enables to perform a class of highly challenging DFT
calculations that were not feasible before.
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I. INTRODUCTION

Electronic structure calculations based on first principles
use a very successful combination of density functional
theory �DFT� �1,2� and pseudopotential theory �3–6�. DFT
reduces the original multielectron Shrödinger equation into
an effective one-electron Kohn-Sham equation, where all
nonclassical electronic interactions are replaced by a func-
tional of the charge density. The pseudopotential theory fur-
ther simplifies the problem by replacing the true atomic po-
tential with an effective “pseudopotential” that is smoother
but takes into account the effect of core electrons. Combin-
ing pseudopotential with DFT greatly reduces the number of
one-electron wave functions to be computed. However, even
with these simplifications, solving the final Kohn-Sham
equation can still be computationally challenging, especially
when the systems being studied are complex or contain thou-
sands of atoms.

Several approaches have been employed in solving the
Kohn-Sham equations. They can be classified in two major
groups: basis-free or basis-dependent approaches, according
to whether they use an explicit basis set for electronic orbit-
als or not. Among the basis-dependent approaches, plane-
wave methods are frequently used in applications of DFT to
periodic systems �7,8�, whereas localized basis sets are very
popular in quantum-chemistry applications �6,9�. Special ba-
sis sets, which do not make use of pseudopotentials, have
also been designed for all-electron DFT calculations. These
basis sets include localized atomic orbitals, linearized aug-
mented plane waves, muffin-tin orbitals, and projector-
augmented waves. A survey of advantages and disadvantages
of these explicit-basis methods can be found in Ref. �6�.

Real-space methods are basis free, and they have gained
ground in recent years �10–13� due in great part to their
simplicity. One advantage of real-space methods is that they
are quite easy to implement in parallel environment. A sec-
ond advantage is that, in contrast with the plane-wave ap-
proach, they do not impose artificial periodicity in nonperi-
odic systems. Third, the application of potentials onto
electron wave functions is performed directly in real space.
Although the Hamiltonian matrices with a real-space ap-
proach are typically larger than with plane waves, the Hamil-
tonians are highly sparse and never stored or computed ex-
plicitly. Only matrix-vector products that represent the
application of the Hamiltonians on wave functions need to be
computed.

This article focusses on effective techniques to handle the
most computationally expensive part of DFT calculations,
namely, the self-consistent-field �SCF� iteration. We present
details of a recently developed nonlinear Chebyshev-filtered
subspace iteration �CheFSI� method. The sequential version
of CheFSI was first proposed in Ref. �14�. The parallel
CheFSI is implemented in our own DFT package called
PARSEC �pseudopotential algorithm for real-space electronic
calculations� �10,11�. Although CheFSI is described in the
framework of real-space DFT, the subspace filtering method
can be employed to other self-consistent field iterations. This
method takes advantage of the fact that intermediate SCF
iterations do not require accurate eigenvalues and eigenvec-
tors of the Kohn-Sham equation.

The standard SCF iteration framework is used in CheFSI,
and a self-consistent solution is sought, which means that
CheFSI has the same accuracy as other standard DFT ap-
proaches. One can view CheFSI as a technique to directly
tackle the original nonlinear Kohn-Sham eigenvalue prob-
lems by a form of nonlinear subspace iteration, without em-
phasizing the intermediate linearized Kohn-Sham eigenvalue
problems. In fact, within CheFSI, explicit eigenvectors are*Email address: yzhou@smu.edu
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computed only at the first SCF iteration, in order to provide
a suitable initial subspace. After the first SCF step, the ex-
plicit computation of eigenvectors at each SCF iteration is
replaced by a single subspace filtering step. The method
reaches self-consistency within a number of SCF iterations
that is close to that of eigenvector-based approaches. How-
ever, since eigenvectors are not explicitly computed after the
first step, a significant gain in execution time results when
compared with methods based on explicit diagonalization.
When compared with calculations based on efficient eigen-
value packages such as ARPACK �15� and TRLAN �16,17�, a
tenfold or higher speed-up is usually observed. CheFSI en-
abled us to perform a class of highly challenging DFT cal-
culations, including clusters with over ten thousand atoms,
which were not feasible before.

This article begins with a summary of SCF for DFT cal-
culations in Sec. II. Details about the parallel implementation
are included in Sec. III. The Chebyshev subspace filtering
algorithm is presented in Sec. IV, and the block Chebyshev-
Davidson algorithm for the initial diagonalization is dis-
cussed in Sec. V. The block Chebyshev-Davidson method
�18,19� improves considerably the efficiency of the diagonal-
ization at the first SCF iteration, compared with the thick-
restart Lanczos �TRLAN� method �16,17� which was used in
Ref. �14�. The paper ends with numerical results in Sec. VI,
and a few concluding remarks.

II. EIGENVALUE PROBLEMS IN DFT SCF
CALCULATIONS

Within DFT, the multielectron Schrödinger equation is
simplified as the following Kohn-Sham equation:

�−
�2

2M
�2 + Vtotal„��r�,r…��i�r� = Ei�i�r� , �1�

where �i�r� is a wave function, Ei is a Kohn-Sham eigen-
value, � is the Planck constant, and M is the electron mass.
In practice, we use atomic units; thus, �=M =1.

The total potential Vtotal, also referred to as the effective
potential, includes three terms,

Vtotal„��r�,r… = Vion�r� + VH„��r�,r… + VXC„��r�,r… , �2�

where Vion is the ionic potential, VH is the Hartree potential,
and VXC is the exchange-correlation potential.

The Hartree and exchange-correlation potentials depend
on the charge density ��r�, which is defined as

��r� = 2�
i=1

nocc

��i�r��2. �3�

Here, nocc is the number of occupied states, which is equal to
one-half the number of valence electrons in the system. The
factor of 2 comes from spin multiplicity. Equation �3� can be
easily extended to situations, where the highest occupied
states have fractional occupancy or when there is an imbal-
ance in the number of electrons for each spin component.

The most computationally expensive step of DFT is in
solving the Kohn-Sham Eq. �1�. Since Vtotal depends on the
charge density ��r�, which in turn depends on the wave func-

tions �i, this equation can be viewed as a nonlinear eigen-
value problem. The SCF iteration is a general technique used
to solve this nonlinear eigenvalue problem. It starts with an
initial guess of the charge density, then obtains the initial
Vtotal and solves �1� for �i�r�’s to update ��r� and Vtotal. Then
Eq. �1� is solved again for the new �i�r�’s and the process is
iterated until Vtotal �and also the wave functions� becomes
stationary.

In general, most of the computational effort involved in
DFT is spent solving Eq. �1�. For this reason, it is the goal of
any DFT code to lessen the burden of solving �1� in the SCF
iteration. One possible avenue to achieve this is to use better
diagonalization routines. However, this approach is limited;
as most diagonalization software has now reached matura-
tion. At the other extreme, one can attempt to avoid diago-
nalization altogether, and this leads to the body of work rep-
resented by linear scaling or order-N methods �see e.g. �20��.
This approach, however, has other limitations. In particular,
the approximations involved rely heavily on some decay
properties of the density matrix in certain function bases. In
particular, they will be difficult to implement in real-space
discretizations. Our approach lies somewhere between these
extremes. We take advantage of the fact that accurate eigen-
vectors are unnecessary at each SCF iteration, since Hamil-
tonians are only approximate in the intermediate SCF steps,
and we exploit the nonlinear nature of the problem. The main
point of our algorithm, developed in Ref. �14�, is that once
we have a good starting point for the Hamiltonian, it suffices
to filter each basis vector at each iteration. In the intermedi-
ate SCF steps, these vectors are no longer eigenvectors but
together they represent a good basis of the desired invariant
subspace. The parallel implementation of the idea will be
discussed in Sec. IV. The next section summarizes parallel
implementation issues in PARSEC.

III. THE PARALLEL ENVIRONMENT IN PARSEC

PARSEC uses pseudopotential real-space implementation
of DFT. The motivation and original ideas behind the method
go back to the early 1990s �10,11�. Within PARSEC, a uniform
Cartesian grid in real-space is placed on the region of inter-
est, and the Kohn-Sham equation is discretized by a high
order finite-difference method �21� on this grid. Wave func-
tions are expressed as functions of grid positions. Outside a
specified sphere boundary that encloses the physical system,
wavefunctions are set to zero for nonperiodic systems. In
addition to the advantages mentioned in the introduction, an-
other advantage of the real-space approach is that periodic
boundary conditions are also reasonably simple to implement
�22�.

The latest version of PARSEC is written in Fortran 95. PAR-

SEC has now evolved into a mature, massively parallel pack-
age, which includes most of the functionality of comparable
DFT codes �23�. The reader is referred to Ref. �24,25� for
details and the rationale of the parallel implementation. The
following is a brief summary of the most important points.

The parallel mode of PARSEC uses the standard message
passing interface �MPI� library for communication. Parallel-
ization is achieved by partitioning the physical domain
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which can have various shapes depending on boundary con-
ditions and symmetry operations. Figure 1 illustrates four
cube-shaped neighboring subdomains. For a generic, con-
fined system without symmetry, the physical domain is a
sphere which contains all atoms plus some additional space
�due to delocalization of electron charge�. In recent years,
PARSEC has been enhanced to take advantage of physical
symmetry. If the system is invariant upon certain symmetry
operations, the physical domain is replaced with an irreduc-
ible wedge constructed according to those operations. For
example, if the system has mirror symmetry on the xy plane,
the irreducible wedge covers only one hemisphere, either
above or below the mirror plane. For periodic systems, the
physical domain is the periodic cell, or an irreducible wedge
of it if symmetry operations are present. In any circumstance,
the physical domain is partitioned in compact regions, each
assigned to one processor only. Good load balance is ensured
by enforcing that the compact regions have approximately
the same number of grid points.

Once the physical domain is partitioned, the physical
problem is mapped onto the processors in a data-parallel
way: each processor is in charge of a block of rows of the
Hamiltonian corresponding to the block of grid points as-
signed to it. The eigenvector and potential vector arrays are
row-wise distributed in the same fashion. The program only
requires an index function indx�i , j ,k� which returns the
number of the processor in which the grid point �i , j ,k� re-
sides.

Because the Hamiltonian matrix is never stored, we need
an explicit reordering scheme which renumbers rows con-
secutively from one processor to the next one. For this pur-
pose we use a list of pointers that gives for each processor,
the row with which it starts.

Since finite difference discretization is used, when per-
forming an operation such as a matrix-vector product, com-
munication will be required between nearest neighbor pro-
cessors. For communication we use two index arrays, one to
count how many and which rows are needed from neighbors,
the other to count the number of local rows needed by neigh-
bors.

With this design of decomposition and mapping, the data
required by the program can be completely distributed. Be-
ing able to distribute the memory requirement is quite impor-

tant in solving large problems on standard supercomputers.
Parallelizing subspace methods for the linearized eigen-

value problems �obtained from a finite difference discretiza-
tion of Eq. �1�� becomes quite straightforward with the above
mentioned decomposition and mapping. Note that the sub-
space basis vectors contain approximations to eigenvectors,
therefore the rows of the basis vectors are distributed in the
same way as the rows of the Hamiltonian. All matrix-matrix
products, matrix-vector products, and vector updates �e.g.,
linear combinations of vectors�, can be executed in parallel.

Reduction operations, e.g., computing inner products and
making the result available in each processor, are efficiently
handled by the MPI reduction function MPI_ALLREDUCE��.

IV. THE NONLINEAR CHEBYSHEV-FILTERED
SUBSPACE ITERATION

The main idea of CheFSI is to start with a good initial
subspace V corresponding to occupied states of the initial
Hamiltonian. This initial V is usually obtained by a diagonal-
ization step. No diagonalizations are necessary after the first
SCF step. Instead, the subspace from the previous iteration is
filtered by a low degree-m Chebyshev polynomial pm�t� con-
structed for the current Hamiltonian H. The polynomial dif-
fers at each SCF step since H changes. The goal of the filter
is to make the subspace spanned by pm�H�V approximate the
eigensubspace corresponding to the occupied states of the
final H. At the intermediate SCF steps, the basis need not be
an accurate eigenbasis since the intermediate Hamiltonians
are not exact. The filtering is designed so that the resulting
sequence of subspaces will progressively approximate the
desired eigensubspace of the final Hamiltonian when self-
consistency is reached.

Our approach exploits the well-known fast growth prop-
erty outside the �−1,1� interval of the Chebyshev polyno-
mial, this allows us to use low degree Chebyshev polynomi-
als to achieve sufficient filtering. At each SCF step, only two
parameters are required to construct an effective Chebyshev
filter, namely, a lower bound and an upper bound of the
higher portion of the spectrum of the current Hamiltonian H
in which we want pm�t� to be small. We propose simple but
efficient ways to obtain these bounds, very little additional
cost is required for the bound estimates.

After self-consistency is reached, the Chebyshev filtered
subspace includes the eigensubspace corresponding to occu-
pied states. Explicit eigenvectors can be readily obtained by
a Rayleigh-Ritz refinement �26� �also called subspace rota-
tion� step. The main structure of the CheFSI method is given
in algorithm IV.1.

We refer to Refs. �14,27� for more algorithmic details and
a literature survey concerning application of Chebyshev
polynomials in DFT calculations. It is quite similar to that of
the standard SCF iteration discussed in Sec. II. One major
difference is that the inner iteration for diagonalization at
step 2 is now performed only at the first SCF step. Thereaf-
ter, diagonalization is replaced by a single Chebyshev-
filtered subspace step, denoted as “CheFS” in algorithm IV.1

FIG. 1. Sample decomposition of a physical domain in
PARSEC.

PARALLEL SELF-CONSISTENT-FIELD CALCULATIONS… PHYSICAL REVIEW E 74, 066704 �2006�

066704-3



Algorithm IV.1. CheFSI for SCF calculation:

�1� Start from an initial guess of ��r�, get Vtotal���r� ,r�.
�2� Solve �− 1

2�2+Vtotal���r� ,r�� �i�r�=Ei�i�r� for �i�r�, i
=1,2 , . . . ,s.

�3� Compute new charge density ��r�=2�i=1
nocc ��i�r��2.

�4� Solve for new Hartree potential VH from �2VH�r�=−4���r�.

�5� Update VXC; get new Ṽtotal�� ,r�=Vion�r�+VH�� ,r�+VXC�� ,r�
with a potential-mixing step.

�6� If 	Ṽtotal−Vtotal	 � tol, stop.

�7� Vtotal← Ṽtotal �update H implicitly�; apply the following

Chebyshev-filtered subspace �CheFS� method to get s
approximate wave functions.

�7.1� Compute bupªupper bound of the spectrum of H.

Set blowªthe largest Ritz value from previous iteration.

�7.2� Perform Chebyshev filtering to the matrix �, whose
column vectors are the s discretized wave functions of
�i�r�, i=1, . . . ,s :�= CHEBYSHEV_ FILTER�� ,m ,blow,bup�.

�7.3� Orthonormalize the basis � by iterated Gram-Schmidt.

�7.4� Perform the Rayleigh-Ritz �rotation� step:

�a� Compute Ĥ=�TH�;

�b� Compute the eigendecomposition of Ĥ: ĤQ=QD,

where D contains nonincreasingly ordered

eigenvalues of Ĥ and Q contains the
corresponding eigenvectors;

�c� “Rotate” the basis as �ª�Q; return � and D.

�8� Go to step 3.

The upper bound at step 7.1 in algorithm IV.1 can be
obtained by using an upper-bound-estimator presented in
Ref. �14�. The CHEBYSHEV-FILTER step in step 7.2 calls a
subroutine which applies the Chebyshev filter to each of the
columns of �. If m is the degree of the polynomial, this
operation amounts to computing the sequence of blocks Xk,
k=2, . . . ,m as follows:

Xk+1 =
2

e
�H − cI�Xk − Xk−1, k = 1,2, . . . ,m − 1

starting with X0=�, X1= 1
e �H−cI�X0. The returned filtered

block is �=Xm. The scalars e and c are defined by e= �bup

−blow� /2 and c= �bup+blow� /2. For simplicity we presented
here an unscaled version of the filtering process. To prevent
the Xk blocks from overflowing it is safer to scale them at
each iteration. The scaling operation is inexpensive as it uses
only values of the Chebyshev polynomial at the approximate
smallest eigenvalue of the Hamiltonian. The reader is re-
ferred to Ref. �14� for details. For discussion of scaling re-
lated to Chebyshev filtering, we refer interested readers to
Ref. �18� or a more detailed technical report �27�.

The parallel implementation of algorithms IV.1 is straight-
forward with the parallel paradigm discussed in Sec. III. We
only mention that the matrix-vector products related to filter-
ing, computing upper bounds, and Rayleigh-Ritz refinement,
can easily be executed in parallel. The re-orthogonalization
at step 7.3 of algorithm IV.1 uses a parallel version of the

iterated Gram-Schmidt DGKS method �28�, which scales
better than the standard modified Gram-Schmidt algorithm.

The estimated complexity of the algorithm is similar to
that of the sequential CheFSI method in Ref. �14�. For par-
allel computation it suffices to estimate the complexity on a
single processor. Assume that p processors are used, i.e.,
each processor shares N / p rows of the full Hamiltonian. The
estimated cost of a CheFS step on each processor with re-
spect to the dimension of the Hamiltonian denoted by N, and
the number of computed states s, is as follows.

The Chebyshev filtering in step 7.2 costs O�s�N / p�
flops. The discretized Hamiltonian is sparse and each matrix-
vector product on one processor costs O�N / p� flops. Step 7.2
requires m�s matrix-vector products, at a total cost of O�s
�m�N / p�, where the degree m of the polynomial is small
�typically between 8 and 20�.

The orthonormalization in step 7.3 costs O�s2�N / p�
flops. There are additional communication costs because of
the global reductions.

The eigendecomposition at step 7.4 costs O�s3� flops.
The final basis refinement step ��ª�Q� costs O�s2

�N / p�.
If a standard iterative diagonalization method is used to

solve the eigenproblem �1� at each SCF step, then it also
requires �i� the orthonormalization of a �typically larger� ba-
sis; �ii� the eigendecomposition of the projected Rayleigh-
quotient matrix; and �iii� the basis refinement �rotation�.
These operations need to be performed several times within
this single diagonalization. But CheFS performs each of
these operations only once per SCF step. Therefore, although
CheFS scales in a similar way to standard diagonalization-
based methods, the scaling constant is much smaller. For
large problems, CheFS can achieve a tenfold or more
speedup per SCF step, over using the well-known efficient
eigenvalue packages such as ARPACK �15� and TRLAN

�16,17�. The total speedup can be more significant since self-
consistency requires several SCF iteration steps.

To summarize, a standard SCF method would have an
outer SCF loop—the usual nonlinear SCF loop, and an inner
diagonalization loop, which iterates until eigenvectors are
within specified accuracy. Algorithm IV.1 simplifies this by
merging the inner-outer loops into a single outer loop, which
can be considered as a nonlinear subspace iteration algo-
rithm. The inner diagonalization loop is reduced into a single
Chebyshev subspace filtering step.

V. CHEBYSHEV-DAVIDSON ALGORITHM
FOR THE FIRST SCF ITERATION

Within CheFSI, the most expensive SCF step is the first
one, as it involves a diagonalization in order to compute a
good initial subspace to be used for latter filtering. In prin-
ciple, any effective eigenvalue algorithms can be used. PAR-

SEC originally had three diagonalization methods: DIAGLA,
which is a preconditioned Davidson method �24,25�; the
symmetric eigensolver in ARPACK �15,29�; and the thick-
restart Lanczos algorithm called TRLAN �16,17�. For systems
of moderate sizes, DIAGLA works well, and then becomes
less competitive relative to ARPACK or TRLAN for larger sys-
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tems when a large number of eigenvalues are required. TR-
LAN is about twice as fast as the symmetric eigensolver in
ARPACK, because of its reduced need for reorthogonalization.
In Ref. �14�, TRLAN was used for the diagonalization at the
first SCF step.

For very large systems, memory can become a severe
constraint. One has to use eigenvalue algorithms with restart
since out-of-core operations can be too slow. However, even
with standard restart methods such as ARPACK and TRLAN,
the memory demand can still surpass the capacity of some
supercomputers. For example, the Si9041H1860 cluster by TR-
LAN or ARPACK would require more memory than the largest
memory allowed for a job at the Minnesota Supercomputing
Institute in 2006. Hence it is important to develop a diago-
nalization method that is less memory demanding but whose
efficiency is comparable to ARPACK and TRLAN. The
Chebyshev-Davidson method �18,19� is developed with
these two goals in mind.

It is generally accepted that for the implicit filtering in
ARPACK and TRLAN to work efficiently, one needs to use a
subspace with dimension about twice the number of wanted
eigenvalues. This leads to a relatively large demand in
memory when the number of wanted eigenvalues is large.
The block Chebyshev-Davidson method discussed in Ref.
�19� introduced an inner-outer restart technique. The outer
restart corresponds to a standard restart in which the sub-
space is truncated to a smaller dimension when the specified
maximum subspace dimension is reached. The inner restart
corresponds to a standard restart restricted to an active sub-
space, it is performed when the active subspace dimension
exceeds a given integer actmax which is much smaller than
the specified maximum subspace dimension. With inner-
outer restart, the subspace used in Chebyshev-Davidson is
about half the dimension of the subspace required by ARPACK

or TRLAN.
We adapted the proposed Chebyshev filters into a

Davidson-type eigenvalue algorithm. Although no Ritz val-
ues are available from previous SCF steps to be used as
lower bounds, the Rayleigh-Ritz refinement step within a
Davidson-type method can easily provide a suitable lower
bound at each iteration. The upper bound is again estimated
by the upper-bound-estimator in Ref. �14�, and it is com-
puted only once. These two bounds are sufficient for con-
structing a filter at each Chebyshev-Davidson iteration. The
constructed filter magnifies the wanted lower end of the
spectrum and dampens the unwanted higher end, therefore
the filtered block of vectors have strong components in the
wanted eigensubspace, which results in an efficiency that is
comparable to that of ARPACK or TRLAN. The main structure
of this Chebyshev-Davidson method is sketched in algorithm
V.1, we refer interested readers to Ref. �19� for algorithmic
details.

The first step diagonalization by the block Chebyshev-
Davidson method, together with the Chebyshev-filtered sub-
space �CheFS� method, enabled us to perform SCF calcula-
tions for a class of large systems, including the silicon cluster
Si9041H1860 for which over 19 000 eigenvectors of a Hamil-
tonian with dimension around 3 million were to be com-
puted. These systems are practically infeasible with the other
three eigensolvers �ARPACK, TRLAN, and DIAGLA� in PARSEC,

using the current supercomputer resources available to us at
the Minnesota Supercomputing Institute �MSI�.

Algorithm V.1. Structure outline of the block Chebyshev-
Davidson method.

�1� Compute bup using the upper-bound-estimator in Ref. �14�; set
blow as the median of the eigenvalues of the tridiagonal matrix
from the upper-bound-estimator. Make the given initial size-k
block V1 orthonormal, set V= �V1�.
�2� �Vf�= CHEBYSHEV_ FILTER�V1 ,m ,blow,bup�.
�3� Augment the basis V by Vf :V← �V ,Vf�, make V orthonormal.

�4� Inner restart if active subspace dimension exceeds a given
integer actmax.

�5� Rayleigh-Ritz refinement: update matrix M s.t. M =VTHV; do
eigendecomposition of M: MY =YD; updated basis V: V←VY.

�6� Compute residual vectors, determine convergence; perform
deflation if some eigenpairs converge.

�7� If all wanted eigenpairs converged, stop; else, adapt blow

=max�diag�D��, set V1��the first k non-converged Ritz vectors in
V�.
�8� Outer restart if size of V exceeds maximum subspace
dimension.

�9� Continue from step 2.

VI. NUMERICAL RESULTS

PARSEC has been applied to study a wide range of material
systems �e.g. Refs. �11,22,23��. The focus of this section is
on large systems where relatively few numerical results exist
because of the infeasibility of eigenvector-based methods.
We mention that Ref. �30� contains very interesting studies
on clusters containing up to 1100 silicon atoms, using the
well-known efficient plane-wave DFT package VASP �8,31�;
however, it is stated in Ref. �30� that a cluster with 1201
silicon atoms is “too computationally intensive.” As a com-
parison, PARSEC using CheFSI, together with the currently
developed symmetric operations of real-space pseudopoten-
tial methods �32�, can now routinely solve silicon clusters
with several thousand atoms.

The hardware used for the computations is the SGI Altix
cluster at MSI, it consists of 256 Intel Itanium processors at
CPU rates of 1.6 GHz, sharing 512 GB of memory �but a
single job is allowed to request at most 250 GB memory�.

The goal of the computations is not to study the parallel
scalability of PARSEC, but rather to use PARSEC to do SCF
calculation for large systems that were not studied before.
Therefore we do not use different processor numbers to solve
the same problem. Scalability is studied in �25� for the pre-
conditioned Davidson method. Here we mention that the
scalability of CheFS is better than eigenvector-based meth-
ods because of the reduced reorthogonalizations.

In the reported numerical results, the 	 per atom �eV� is
the total energy per atom in electron-volts, this value can be
used to assess accuracy of the final result; the No. SCF is the
iteration steps needed to reach self-consistency; and the No.
MVp counts the number of matrix-vector products. Clearly
No. MVp is not the only factor that determines CPU time,
the orthogonalization cost can also be a significant compo-
nent.
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For all of the reported results for CheFSI, the first step
diagonalization used the Chebyshev-Davidson method �Al-
gorithm V.1� �See Table I�. In Table II, the 1st CPU denotes
the CPU time spent on the first step diagonalization by
Chebyshev-Davidson; the total CPU counts the total CPU
time spent to reach self-consistency by CheFSI.

The first example in Table II is a relatively small silicon
cluster Si525H276, which is used to compare the performance
of CheFSI with two eigenvector-based methods. All methods
use the same symmetry operations �32� in PARSEC.

For larger clusters Si2713H828 and Si4001H1012, Diagla be-
came too slow to be practical. However, we could still apply
TRLAN for the first step diagonalization for comparison, but
we did not iterate until self-consistency was reached since
that would cost a significant amount of our CPU quota. Note
that with the problem size increasing, Chebyshev-Davidson
compares more favorably over TRLAN. This is because we
employed an additional trick in Chebyshev-Davidson, which
corresponds to allowing the last few eigenvectors not to con-
verge to the required accuracy. The number of the non fully
converged eigenvectors is bounded above by actmax, which is
the maximum dimension of the active subspace. Typically
30
actmax
300 for Hamiltonian size over a million where

several thousand eigenvectors are to be computed. The
implementation of this trick is rather straightforward since it
corresponds to applying the CheFS method to the subspace
spanned by the last few vectors in the basis that have not
converged to required accuracy.

For even larger clusters Si6047H1308 and Si9041H1860, it be-
came impractical to apply TRLAN for the first step diagonal-
ization because of too large memory requirements. For these
large systems, using an eigenvector-based method for each
SCF step is clearly not feasible. We note that the cost for the
first step diagonalization by Chebyshev-Davidson is still
rather high, it took close to 50% of the total CPU. In com-
parison, the CheFS method saves a significant amount of
CPU for SCF calculations over diagonalization-based meth-
ods, even if very efficient eigenvalue algorithms are used.

Once the DFT problem, Eq. �1�, is solved, we have access
to several physical quantities. One of them is the ionization
potential �IP� of the nanocrystal, defined as the energy re-
quired to remove one electron from the system. Numerically,
we use a �SCF method: perform two separate calculations,
one for the neutral cluster and another for the ionized one,
and observe the variation in total energy between these cal-
culations. Figure 2 shows the IP of several clusters, ranging
from the smallest possible �SiH4� to Si9041H1860. For com-
parison, we also show the eigenvalue of the highest occupied
Kohn-Sham orbital, EHOMO. A known fact of DFT-LDA is
that the negative of the EHOMO energy is lower than the IP in
clusters �6�, which is confirmed in Fig. 2. In addition, the
figure shows that the IP and −EHOMO approach each other in
the limit of extremely large clusters.

Figure 2 also shows the electron affinity �EA� of the vari-
ous clusters. The EA is defined as the energy released by the
system when one electron is added to it. Again, we calculate
it by performing SCF calculations for the neutral and the
ionized systems �negatively charged instead of positively
charged now�. In PARSEC, this sequence of SCF calculations
can be done very easily by reusing previous information: The
initial diagonalization in the second SCF calculation is
waived if we reuse eigenvectors and eigenvalues from a pre-

TABLE I. Si525H276, using 16 processors. The Hamiltonian di-
mension is 292 584, where 1194 states need to be computed at each
SCF step. The first step diagonalization by Chebyshev-Davidson
cost 79 755 No. MVp and 221.05 CPU seconds; so the total No.
MVp spent on CheFS in CheFSI is 110 000. The polynomial degree
used is m=17 for Chebyshev-Davidson and m=8 for CheFS. The
first step diagonalization by TRLAN requires 14 909 No. MVp and
265.75 CPU seconds.

Method No. MVp No. SCF steps E per atom �eV� CPU �s�

CheFSI 189755 11 −77.316873 542.43

TRLAN 149418 10 −77.316873 2755.49

DIAGLA 493612 10 −77.316873 8751.24

TABLE II. Performance of the CheFSI method in various test systems. All calculations were performed using 16 processors, and
polynomial degrees m=17 for the Chebyshev-Davidson and m=8 for CheFSI, except when otherwise stated.

System dim. of H nstate No. MVp No. SCF E per atom �eV� First CPU Total CPU

Si2713H828
a 1074080 5843 1400187 14 −86.16790 7.83 h 19.56 h

Si4001H1012
b 1472440 8511 1652243 12 −89.12338 18.63 h 38.17 h

Si6047H1308
c 2144432 12751 2682749 14 −91.34809 45.11 h 101.02 h

Si9041H1860
d 2992832 19015 4804488 18 −92.00412 102.12 h 294.36 h

Fe302
e 2790688 1812�2 9377435 110 −795.18064 16.16 h 112.44 h

Fe326
f 2985992 1956�2 10241385 119 −795.19898 11.62 h 93.15 h

Fe360
g 3262312 2160�2 12989799 146 −795.22329 16.55 h 140.68 h

am=10 for CheFS. First step diagonalization by TRLAN cost 8.65 h, projecting it into a 14-step SCF iteration cost around 121.1 h.
bFirst step diagonalization by TRLAN cost 34.99 h, projecting it into a 12-step SCF iteration cost around 419.88 h.
cUsing 32 processors.
dUsing 48 processors.
em=20 for Chebyshev-Davidson; m=19 for CheFS.
fUsing 24 processors. m=20 for Chebyshev-Davidson; m=19 for CheFS.
gUsing 24 processors. m=20 for Chebyshev-Davidson; m=17 for CheFS.
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vious calculation as initial guesses for the ChebFSI method.
Figure 2 shows that, as the cluster grows in size, the EA
approaches the negative of the lowest-unoccupied eigenvalue
energy. A power-law analysis in Fig. 2 indicates that both the
ionization potential and the electron affinity approach their
bulk values according to a power-law decay Rn with expo-
nent close to 1. The numerical fits are

IP = �IP�0 + A/D�, �4�

EA = �EA�0 − B/D
, �5�

with �IP�0=4.50 eV, �EA�0=3.87 eV, �=1.16, 
=1.09, A
=3.21 eV, B=3.13 eV. These values for A and B assume a
cluster diameter D given in nanometers. The difference be-
tween ionization potential and electron affinity is the elec-
tronic gap of the nanocrystal. As expected, the value of the
gap extrapolated to bulk, �IP�0− �EA�0=0.63 eV, is very
close to the energy gap predicted in various DFT calculations
for silicon, which range from 0.6 to 0.7 eV �6,33�. Owing to
the slow power-law decay, the gap at the largest crystal stud-
ied is still 0.7 eV larger than the extrapolated value.

Other properties of large silicon clusters are also expected
to be similar to the ones of bulk silicon, which is equivalent
to a nanocrystal of “infinite size.” Figure 3 shows that the
density of states already assumes a bulklike profile in clus-
ters with around ten thousand atoms. The presence of hydro-
gen atoms on the surface is responsible for subtle features in
the DOS at around −8 and −3 eV. Because of the discrete-
ness of eigenvalues in clusters, the DOS is calculated by
adding up normalized Gaussian distributions located at each
calculated energy eigenvalue. In Fig. 3, we used Gaussian
functions with dispersion of 0.05 eV. More details are dis-
cussed in Ref. �34�.

We also applied PARSEC to some large iron clusters. Ex-
tensive analysis of the magnetic properties of iron clusters
based on the methodology presented here and in previous

work �14�, has provided decisive evidence for surface effects
in the magnetic moment of these systems �35�, confirming
earlier experimental data. Table II also contains three clusters
with more than 300 iron atoms. These metallic systems are
well known to be very difficult for DFT calculations, because
of the “charge sloshing” �7,8�. The LDA approximation used
to get exchange-correlation potential VXC is also known not
to work well for iron atoms. However, PARSEC was able to
reach self-consistency for these large metallic clusters within
reasonable time length. It took more than 100 SCF steps to
reach self-consistency, which is generally considered too
high for SCF calculations, but we observed �from calcula-
tions performed on smaller iron clusters� that eigenvector-
based methods also required a similar number of SCF steps
to converge, thus the slow convergence is associated with the
difficulty of DFT for metallic systems. Without CheFS, and
under the same hardware conditions as listed in Table II, over
100 SCF steps using eigenvector-based methods would have
required months to complete for each of these clusters.

VII. CONCLUDING REMARKS

We developed and implemented the parallel CheFSI
method for DFT SCF calculations. Within CheFSI, only the
first SCF step requires a true diagonalization, and we per-
form this step by the block Chebyshev-Davidson method. No
diagonalization is required after the first step; instead,
Chebyshev filters are adoptively constructed to filter the sub-
space from previous SCF steps so that the filtered subspace
progressively approximates the eigensubspace corresponding
to occupied states of the final Hamiltonian. The method can
be viewed as a nonlinear subspace iteration method which
combines the SCF iteration and diagonalization, with the di-
agonalization simplified into a single step Chebyshev sub-
space filtering.

Additional tests not reported here, have also shown that
the subspace filtering method is robust with respect to the
initial subspace. In addition to self-consistency, it can be

FIG. 2. �Color online� Ionization potential �IP, crosses� and elec-
tron affinity �EA, “plus” signs� for various clusters with diameters
ranging from 0 nm �SiH4� to 7 nm �Si9041H1860�. Squares denote
the negative of the highest occupied eigenvalue energy �−EHOMO�
of the neutral cluster. Diamonds denote the negative of the lowest
unoccupied eigenvalue energy �−ELUMO�.

FIG. 3. Density of states �DOS� of the cluster Si9041H1860 �upper
panel� compared with periodic crystalline silicon �lower panel�. As
a consequence of the large size, the DOS of the Si9041H1860 cluster
is very close to that of bulk silicon �the infinite-size limit�.
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used together with molecular dynamics or structural optimi-
zation, provided that atoms move by a small amount. Even
after atomic displacements of a fraction of the Bohr radius,
the CheFSI method was able to bring the initial subspace to
the subspace of self-consistent Kohn-Sham eigenvectors for
the current position of atoms, with no substantial increase in
the number of self-consistent cycles needed.

CheFSI significantly accelerates the SCF calculations, and
this enabled us to perform a class of large DFT calculations
that were not feasible before by eigenvector-based methods.
As an example of physical applications, we discuss the en-
ergetics of silicon clusters containing up to several thousand
atoms.
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